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Introduction

The simulations reported herein (Part 1) are in response to a
-1

published invitation~ to establish benchmark comparisons of different

techniques of solving the Navier-Stokes and thermal energy equations for

a particular thermally driven flow. Included also is a brief analysis of

the results and some comparisons with previous solutions. The second

section of this paper contains a result at a higher Rayleigh number and

some tilted cavity results? which were performed, in part, as potential

candidates for more difficult follow-up benchmark problems (another

worthwhile simulation, not reported herein, is the vertical slot problem).



Part 1

THE BASIC BENCHMARK SIMULATIONS

Problem Specifications

The problem of interest is a two dimensional unit square cavity

containing a viscous fluid (u = w = O on all boundaries). The two

vertical walls are kept at uniform temperatures differing by a constant

amount, AT, the left being hotter. The horizontal faces are fully

insulated (21T/az = O), and gravity is acting in the negative z

direction. The Prandtl number is kept constant at .71, and the Rayleigh

number assumes the values: 103, 104, 105, and 106.

Governing Equations and Computational Method

The hydrodynamic fluws of interest here are governed by the

incompressible Navier-Stokes equations

approximation coupled with the thermal

The time independent equations of motion

property Newtonian fluid are:

u . vu =V . ~+yPg~T

V.LJ=O

incorporating the Boussinesq

convection-diffusion equation.

and continuity for a constant

(1)

(2)

Where y = (u,w) is the velocity in the x and z dimensions respectively, P

is the constant density at reference temperature, y is the coefficient of

thermal expansion, g is the acceleration due to gravity, ~ is a unit

vector (sin EJ, cosO), 6 being the angle between the negative z axis and

the gravitational force vector and is positive in the clockwise

direction.
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T is the deviation from reference temperature, and ~ , the symmetric

stress tensor, is defined by:

()aui au,

‘ij=-pdij+VX_
+$ ●

ji
(3)

P is the pressure deviation from hydrostatic, 6 ij is the Kronecker

delta function, and p is the constant bulk viscosity. The energy

equation is

2
y . VT= KV T (4)

where K j.s the coefficient of thermal diffusivity. Employing the

suggested nondimensionalization2leads to:

U.vu= -~ + pr[V2~ + v(v~~)l + (prRa)TE

V.y=o

2
y . VT =V T

Here Pr is the Prandtl number:

Pr =

and Ra is the Rayleigh number:

Ra= PY9 AT D3
UK

(5)

(6)

(7)

(8)

(9)

(distance between hot and cold

penalty method3 using finite

where D is the characteristic length scale

surfaces).

Eqns. 5-7 will be solved via the

elements. We believe that this approach, in conjunction with the

quadratic (9-node) element, is “optimal” in yielding an exceptionally

accurate as well as efficient solution. The penalty formulation can be
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interpreted as a technique which employs, in place of Eqn. 6, a pseudo

‘equation of statew:

P=-av. u (lo)

where A is a “penalty parameter” of large enough magnitude to assure

(since P is finite) that the continuity equation has been closely

satisfied (to 0(1/A)). This results in a very slightly compressible

fluid with A taking on the analogy of the bulk modulus.3 For contained

flows, the arbitrary pressure constant

/PdA=o,
L!

which is obtained by integrating

Substituting

u.

and thus the

reference to

an

to

to

Eqn. 10 into Eqn. 5 leads

isautomatically determined by

(11)

Eqn. 10 over the dcmain (Q).

to

Vy = (Pr + A)V(V ● y) + Pr V2y + (PrRa) T & (12)

continuity equation has been eliminated along with explicit

the pressure. In this formulation the constraints on A for

accurate solution are:

A>>Ra

insure incompressibility, and

a< ’-blo8—

avoid significant rounding errors (C!DC-7600computer) which restricts

the primary flow parameter Ra to be less

The roundoff-induced lower bound on

follmving nondimensionalized form of the

than 106-107.

Ra can be eased by employing the

governing equations:

(13)

~yvT=v2T (14)
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This nondimensionalization (in which the characteristic velocity

is -rather than ~/D) has been employed for two reasons: first it

results in

unity, and

method is

dimensionless velocities and pressures that are of order

secondly, it allcnw simulation at larger Ra since the penalty

more accurate in this form; the lower bound on k is now

A >> A/Pr, which permits high accuracy at much larger Ra numbers. All

data reported in this paper have been converted to be consistent with

Eqns. 7&12, although we use Eqn. 13&14 in our calculations.

The solution of Eqns. 13 and 14

using the finite element method in a

simulations we have used biquadratic

bilinear discontinuous approximations

located at the 2 by 2 Gauss points of

using reduced (2x2) integration on the

has been numerically approximated

Galerkin formulation.3 In these

approximations for g and T with

for P (the pressure nodes are

each 9 node element, effected by

penalty term in Eqn. (13); see $.

The resultant nonlinear equations were solved using Newton-Raphson

iteration on the coupled (~, T) system, with a relative combined R@4S

error norm of 10-4 defining convergence. The concomitant linear

algebraic systems were solved using a disk-based unsymmetric frontal

elimination method4 without pivoting. The solution at a lc%verRa was

(usually) used as an initial guess for the next higher computation.

The local and average heat fluxes have each been calculated two

ways. In the first two simulations (Ra = 103, 104), no significant

heat flux difference could be noticed; for Ra = 105 the two methods

differ slightly, mainly in the locaticm of the maximum heat fluxr or

maximum Nusselt number (Nu). At Ra = 106 and (especially) 107, the

differences becane pronounced.

The first, more conventional method is simply computing the outward

normal derivative of temperature at the vertical walls, utilizing the
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interpolation functions in the element. These values are computed and

reported at the two Gauss points on the boundary of each element and

hence this technique will be referred to as the “Gauss point method” (gp)

in the text and illustrations.

The second mode of Nusselt number calculation is based on global

conservation of energy, and is referred to as the “consistent flux

method”, (Cf). For this particular problem, the symmetry of the

solutions results in global heat balances for both methods; however, in

general only the cf method can achieve this result. The new technique of

heat flux calculation, inspired by Marshall

terms for convective as well as conductive heat

et al.,3 which includes

transport, is given by

P (15)

where r is the portion of the boundary on which the temperature was

specified, q, is the consistent heat flux at the i-th node Onr

-;+i n(qi ~ i : r _ ● VT), and $i the biquadratic basis function

associated with this node. For further details on this method, in this

and other contexts, see reference 5.

Numerical Results

The computational domain (Fig. la) consists of 168 isoparametric

elements (745 nodes). The

the central area (AXmax

near the walls (AXmin

further refined (Fig.

complexities expected at

.0044). In the penalty

discretization chosen

.0845) and is graded

.0175); in addition

has larger elements in

toward smaller elements

the corners have been

lb) in order to better resolve the flow

large Rayleigh number (AXmin in the corners is

formulation, this grid results in a system of
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2235 equations which, on a CDC-7600, required 24 seconds

(with a 78000 word in-core storage requirement) and an

per iteration

average of 5

iterations per simulation. The 672 pressures, obtained via Eqn. 10 in a

post-processing manner, are computed at the Gauss points; however for

display purposes, the resulting pressure field is “smoothed” to the nodes

via scheme 4 in reference 6 (pressures at element corners are obtained by

linear extrapolation from the 2 x 2 Gauss points with the results then

averaged over all contributing elements at each corner node).

The results of the basic simulations are presented in Figures 2-11

and Table 2, but first we digress briefly to show the sensitivity of

results to the value of the penalty parameter A. In Table 1 is shown

calculated stream function, ~ r for Ra = 106 at the center of

cavity (in some sense a measure of flow strength) for-several values

A, showing the desired insensitivity for A > 106. We used A = 108—

all other simulations reported herein.

TABLE 1.

A 102 103 104 105 106 107 108 109

the

the

the

of

for

$
(.5,.5) 15.981 16.866 16.424 16.372 16.366 16.366 16.366 16.366

For Ra = 103 and 104 the velocity fields are highly syxnetric

(Fig.

layer

Ra =

2a,b, 5a,b) and quite similar. In both cases no sharp boundary

can be determined and the flow fills the cavity. The simulation at

104 shows the onset of a behavior characteristic of higher
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Rayleigh number flow; i.e., the development of a stratified central core

region (see also Fig. 3b). At Ra = 105 three major changes can be

seen: (1) the development of secondary recirculation eddies (Fig. 2c),

(2) the substantial horizontal temperature gradient near

9c), and (3) the lower left and upper right corners have

active than the other two (Fig. 5c).

The new basic flow pattern is now established and

number increases to 106 no major changes are observed.

flow is the vortex intensification (with the possible

the walls (Fig.

become much more

as the Rayleigh

Notable in this

emergence of a

tertiary recirculation with counterclockwise rotation in the core), the

thinning of the vertical boundary layers, the further migration of the

secondary vortex centers towards the walls, and the hydrostatically

dominated pressure field (Fig. 4d; P ~ /Tdz).

An overall summary of selected results is contained in Table 2 (for

higher accuracy, velocity and consistent flux Nusselt number extrema have

been interpolated using the basis functions and are thus generally not

coincident with nodal points).

Gill’ predicts the major boundary layer characteristics of high

Rayleigh number flow quite well. In his analysis the boundary layer

thickness, L, is estimated by an appropriate balance of terms, as

g~ ~ Re-1/4 (16)

Thus for Ra = 106 a boundary thickness of 0.0316 is predicted and

0.0178 for Ra = 107. The node closest to the boundary in the

computational dcmain used here is located at x = 0.0175, and hence the

grid probably isn’t fine enough to sufficiently resolve the fluid motion
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and thermal characteristics of this more difficult (Ra = 107) flow.

When the scaled vertical velocity (w/fi) is plotted versus an expanded

horizontal length scale (x 4~a), the excellent correlation for high

Rayleigh number fla can be seen (Fig. ha). Readily apparent also is

the theory’s “failure” helm Ra = 105. Gill’s assumption relies on a

boundary layer thickness, k , which is small compared to the overall

horizontal length scale D; a valid upper bound of this ratio was

estimated by Gill as approximately 1/12 (or alternatively Ra > 20000).

The temperature field, when plotted in a similar manner, also reflects

the theory’s success for large Ra (Fig. llb).
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Figure 1 Computational grid.
a) Domain and boundary conditions.
b) Details of the mesh in a corner.
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c) d)

Figure 2 Stream function.
a) Ra = 103

b) Ra = 104

c) Ra = 105

d) Ra = 106

* = 1.07
* = 4.84
* = 10.7
* = 18.5

A+ = -.053

A@ = ‘.24
A+ = -.266
A~ = -.84
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b).,,::,::: ::. 1’ 1“1!fl:tfi

!7“ +-
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I I, 1 ..

Figure 3 Temperature * = 0.0 AT = ~.1
a) Ra = 103
b) Ra = 104
c) Ra = 105

d) Ra = 106
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a)

c)
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\

b)

.....

,.

d)

L-------!

Figure 4 Pressure
a) Ra = 103 * = 79.14 AP= -16.84

b) Ra = 104 * = 7.659 x 102 ~P = -1.255 X 102

c) Ra = 105 * = 6.315 x 103 AP =-1.002 X 103

d) Ra = 106 * = 5.452 X 104 @ = -8.932 X 103
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1.
w. . . . . . . . J

c)
,!, --–~

.

Velacity.
103a) Ra=. IQ!max = ~~7

h) Ra = 104
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a)

Y“’’”/.
-,

—. ,,

b)

J —-
/7 .—--==

Figure 6 Vorticity (Q).
a) Ra = 103

b) Ra = 104

c) Ra = 105

d) Ra = 106

* = -25.3 ACl= 8.47
* = -74.5 AQ = 54.9
* = -319.0 AQ = 333.0
* = -1800.0 ASl= 2050.0

.
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Figure 7 Horizontal vel~ity at x = .5

a) Ra = 103
b) Ra = 104
C) Ra = 105
d) Ra = lo6

1
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Figure 8 Vertical velocity at z = .5
a) Ra = 103
b) Ra = 104
c) Ra = 105

d) Ra = 106
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Figure g Temperature at z = .5
a) Ra s 103
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(b)

— Consistent flux method
——. Gauss point method

II
10 20 30 40

Nu

Figure 10 Heat flux at cold wall
a) Ra = 103, 104
b) Ra = 105, 106, 107
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Figure 11 a) Scaled vertical velocity in boundary layer (z = .5).
b) Temperature in boundary layer (z = .5).



TABLE 2

Ra tax ‘tax Nucf Nucf Nucf ‘U9P Nugp ‘U9P
v max Number of

iterations
Z=*5 x=.5 (ave) (max) (rein) (ave) (max) (rein)

1(33 3.7040 3.656 1.1178 1.5065 .6912 1.1179 1.5064 .6912 1.1754

@ @ @ @ @ @ x=.5 4

x=. 166 z=.812 z=.0746 Z=l.o z=.087 z=.998 Z=.5

104 19.675 16.193 2.2449 3.535 .5850 2.2479 3.5351 .5852 5.0753

@ @ @ @ @ @ x=.5 4

X=. 1187 Z=. 822 Z=.1315 Z=l.o Z=*15 z=.998 Z=.5

1(35 68.896 34.620 4.5211 7.731 .7277 4.5586 7.8099 .728 9.6206

@ @ @ @ @ @ x=.728 4

x=.0663 z=.856 z=.0746 Z=l ● o z=.087 z=.998 z=.416

lo6 220.64 64.593 8.8170 17.294 .9805 9.1699 18.508 .9837 16.707

@ @ @ @ @ @ x=.828 6
x=.0316 z=.850 Z=.045 Z=l .0 Z=.043 z=.998 Z=.5

107 728.23 147.56 16.3400 36.503 1.4158 18.1798 39.1829 1.4302 29.697

@ @ @ @ @ @ x=.897 7*
x=.0237 Z=.888 Z=.oll Z=l .0 .019 z=.998 z=.416

*An intermediate step at Ra = 5 x 106 was needed for an initial guess.

>
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Part 2

HIGHER RAYLBIGH NUMBER FLOW (Ra = 107) AND A FEW NEW TWISTS

Since no difficulty was encountered in solving

we pushed on a bit, partly to test the limits of our

provide some ideas for more difficult and informative

A simulation at an elevated Rayleigh number

generally predictable results (the solution was more

the given problems,

code, and partly to

test problems.

was attempted with

difficult to obtain

- see Table 2). As stated previously the discretization near the wall is

probably not fine enough for very accurate results in the

however the overall agreement with previous solutions3,7

good (Figs. 12 and 13).

boundary layer,

is still quite

The difference between the Gauss point method for calculating heat

flux and the consistent method becomes apparent near Ra = 106, and has

greatly intensified by Ra = 107 (Fig. 10b). This discrepancy has two

possible explanations, the first being that the difference occurs in an

area having a large horizontal thermal gradient accompanied by a mild

outward convex bending of the isotherms (Figs. 14b,d). This vertical

temperature gradient results in some heat transport in the z direction, a

contribution to the Nusselt number that the Gauss point method doesn’t

account for and thereby calculates a larger magnitude. (Note the

relatively large velocities in the lower left corner in Figs. 14a and

14C). At Ra = 107 the vertical gradient is more complicated yet and

the flux minimum near z = 0.0306 reflects it (Fig. 10b). In general we

believe that the more conventional Gauss point heat flux predictions are

slightly too high. The second possible explanationis a combination of a
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lack of adequate grid refinement coupled with a fairly abrupt change in

element size near the corners. (Viewed in retrospect, our grid

refinement in the corners could have been better).

Convection in an Inclined Cavity

A series of numerical experiments at Ra = 106 was made with the

domain tilted at five different angles, 6, with respect to the vertical:

(the direction of gravity) e = ~30°, ~60°, -90°. The cavity in its

normal orientation corresponds to e = 0°, B~nard flow corresponds to

e = -90°, and the trivial no-flm, heated from above, condition is

e = +90°.

A stistantial amount of work has been performed experimentally,

theoretically, and numerically for a variety of different angles and

aspect ratios.
8,9,10 The majority of the literature available however

is devoted to lower Rayleigh numbers or aspect ratios substantially

different than unity, which is investigated here.

Large changes occur in the flow field once the cavity has been

rotated slightly. For small negative tilts (at Ra = 106) the flow

enters a transitional region where the tm dimensional assumption is

apparently no longer valid. Hart* studied this regime (for low aspect

ratios) and concluded that there are few truly two-dimensional solutions

at any tilt - positive or negative, at this Rayleigh number. When .

rotated, the unicellular, transverse flow at 0 = 0° gives way to

instabilities which are usually in the form of longitudinal roll cells

centered at z = .5 and periodic in the y-direction. The net result is a

complex, three-dimensional flow field. At tilt angles less than
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approximately -20°, Hart predicts a turbulent flow and at positive

angles (again near 200) a laminar characteristic is present, which

again undergoes a transformation before reaching convective stability at

e = 90°. While the conditions investigated by Hart (a small aspect

ratio) are substantially different than those studied in this report, it

safe to assume that the results presented here for e < -300seems

probably have little physical significance. Solutions at tilt angles of

large magnitude are included here only for insight into the two

dimensional simplification of this complex and perhaps unstable three

dimensional fluw.

Each tilted

solution (smaller

unable to obtain

cavity simulation (except 0 = -90°) used a simpler

angle of tilt) as an initial guess. Since we were

solutions (divergent iterations) beyond e = -67°, the

‘B&nard” 5result was obtained by working up from Ra = 104? 10 ~ and

finally to Ra = 106 (thus possibly reflecting the complex behavior

-700 to -90° indicated by Arnold et al.9).near 19=

The solution at 0 = -30° (Fig. 15; see also Table 3) clearly shows

major changes from its 0 = 0° counterpart. The overall flow strength

has increased, and the maximum velocity is now located just off the

insulated wall. The central core is becoming isothermal (no longer

stably stratified) and the thermal boundary

reflected in the reduced Nusselt number (Table

in the pressure solution from the hydrostatic

near the walls, particularly at the left and

velocities are quite large.

layer less steep as is

3). Large perturbations

distribution can be seen

right hand corners where

Tilting the cavity to -60° (Fi9. 16) results in

the flow pattern established at 6 = -30°~ with the

a continuation of

exceptions of the
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unicellular characteristic and an essentially isothermal core. Overall

flm strength has increased and the Nusselt number decreased. The

velocity field is approaching overall syrmnetryas is reflected in the

stream function.

The velocity field of the enclosed B~nard solution at B = -90°

(Fig. 17) qualitatively resembles the 6 = 0°, Ra = 103 solution.

Closer investigation, however, reveals a more vigorous flow with

recirculation eddies in all corners (Fig. 17e). These recirculation,

while quite feeble (the larger two being roughly 30 times weaker than the

base flow), have a substantial effect on the heat transfer, forcing the

maximum Nusselt number to migrate towards the midside and drop markedly

in magnitude.

Rotating the cavity in the opposite direction to 0 = +30° (Fig.

18) causes the vortex center to separate and migrate towards the

horizontally oriented corners. The circulation strength decreases from

its maximum at e = 0° and the most active corners are the “horizontal”

ones (as is true in all the tiltad cavity results). The heat flux has

dropped to a value that agrees quite well with Catton et al.lo As in

the 6 = 0° simulation, the pressure field is largely hydrostatic.

Although the stream function indicates complex motion for the e =

60° result (Fig. 19), the magnitude of overall flow is substantially

weaker. The Nusselt number again correlates with that in the

literature.lo

Basic flew? characteristics fOr the above five tilted cavity

simulations are contained in Table 3.
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Conclusions

.

The solution for the given comparison problems were easily obtained

and the results show good agreement with prior work. A new technique for

heat flux calculation was reported with results, however, that differ

with others at large Ra. ~is new method, which can also guarantee a

global heat balance, is probably superior to the traditional method.

Additional problems were investigated in the second section of this

paper in order to test our computer program’s performance and to suggest

new, more difficult comparison problems. A final suggestion for a

challenging test simulation is that of thermal convection in a vertical

slot, with an aspect ratio of 5 or 10 (or perhaps 20), in which very

complex flow fields are known to exist (see Elderll and De Vahl

Davis12)r with multiple secondary, and even tertiary cells. We have

experience in this area (an aspect ratio of 20 and Pr = 1000) and can

attest to its difficulty.

.

.
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Figure 12 Simulation at Ra = 107●

a) Stream function (y)
b) Temperature (T)
c) Velocity (u)
d) Pressure (P)
e) vorticity (Q)

26.6 A+ = -1.6
-0.024 AT = +.047—

y ;:XX=1::7 ‘4
AP = 4.02 X 105

-1:98 X 103 A$l= 4.42 X 103
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Figure 13 Mi&xwity profiles for Ra = 107.
a) Horizontal velocity at x = .5
b) Vertical velocity at z = .5
c) Temperature at z = .5
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a)

.

c)

Figure 14 Details of ower lefthand corner:
& velocity and temperature.

a) Ra = 10 Iul = 85.5
b) Ra = 10~ max *= -.22 AT = .04
c) Ra = 10 Iulmax= 313.0
d) Ra = 107 *= -.22 AT = .04

b)

d)
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,

.

Figure 15 e = -30°, heated from helm, Ra = 106.
a) Stream function * = 24.4
b) Temperature

A$ = 2.74* = o.
c) Pressure

AT = 3.1

d) Velocity ~Q~mj;-~32;7~05 ‘p = 6“500 x 104
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Figure 16 0 = -60°, heated from below, Ra = 106.
a) Stream function * = 35.6 A$ = 3.92
b) Temperature * = 0.0 AT = +.1
c) Pressure -6.76 X 104 AP =

TyTmax=338.

:.23 X 104
d) Velocity
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a)

1

.2

.1

.

4

..4 .-l 0

Figure 17 “B6nard” flow, heated from below, 6 = -90, Ra =
a)

1060
Stream function * = 73.5

b) Temperature
A+ = 8.34

* = 0.0 AT =
c) Pressure

~. 1
* = -1.46 X 105

d) Velocity
AP =

IQlma~ = 339.
3.89 X 104

e) Close-up of a * = -2.35 A@ = .337
corner recircu-
lation

d)

e)

b)
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Figure 18 0 = +30°, heated from above, Ra = 106.

a) Stream function * = 7.93 AjJ= .869

b) Temperature * = 0.0 AT = +.1

c) Pressure * -2.17 X 105 1.69 x 105

d) Velocity l~~max = 129= ‘p =
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Figure 19 e = +60°, heated from above, Ra = 106.
a) Stream function * = 2.7

AjJ= .3o7b) Temperature * = 0.0
c) Pressure

AT =
* 2.1

= -1.97 x 105
d) Velocity

lJ!lmax

AP = 1.64 X 105
= 36.1



TABLE 3

Number of
iterations

Maximum Nu(ave)cf Nu(max)cf Nu(min)cf 4max 4(.5,.5) P from previou:
0

Velocity
max

solution

-900 338.65 5.008 8.616 1.184 81.800 81.8 2.051x104

@ @ @ e @ 14*
(.5,.0746) Z=*331 Z=l.o (.5,.5) (.031,.035)

-(jOO 337.63 7.893 12.38 1.447 39.633 35.12 4. O19X1O4

@ @ @ @ @ 5

(.585,.055) z=.213 Z=l. o (.272,.416) (.031,.0)

-300 266.52 8.711 13.09 1.507 27.033 23.33 4.575X104

@ @ @ @ @ 7

(.727,.055) z=.046 Z=l .0 (.415,.272) (.031,0.)

00 220.64 8.817 17.29 .9805 16.707 16.37 6.353x104

@ @ @ @ @ 6

(.032,.5) Z=.045 Z=l.o (.828,.5) (.031,0)

300 128.58 5.316 15.70 .2034 8.810 8.057 1.294x105

@ @ @ @ @ 7

(.035,.272) Z=.035 Z=l.o (.868,.585) (.031,0)

600 36.14 1.566 4.492 .2155 2.991 .6246 1.280x105
@ @ @ @ @ 4

(.035,.272) z=.026 2=1.0 (.868,.585) (.031,0)

*
This solution followed from 6 = -90° at Ra = 104 (5 iter.), Ra

5 6
= 10 (5 iter.) and Ra = 10 (4 iter.)c

. . . .
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